Ⅴ. 고찰
1. 채널 본딩 여부에 따른 통신 성능 비교
하나의 신호가 2개 이상의 채널을 사용해 통신하는 채널 본딩은 대역폭에 여유가 있는 경우에만 사용한다. 한정된 대역폭을 중복되지 않고 활용하기 위해 대역폭을 채널 단위로 나눈 것과는 반대 방향이다. 앞에서 말했듯이 채널 본딩 시 사용되는 2개 채널은 4개 채널 차이가 난다.
이 경우에서는 13채널을 기준으로 하향 채널을 설정했으므로 9채널이 함께 사용된 것이다. 그리고 13채널과 9채널을 개별적으로 사용한 경우와 비교했다. 실험 결과 본딩 시보다 채널을 나누어 쓰는 경우에 조금 더 성능이 좋았지만 성능 차이는 그리 크지 않았다. 지금까지 채널을 나누어 써 왔던 것이 유효한 것이기는 하지만 한 가지 더 고려해야 할 점이 있다.
Fig10. 채널 본딩 활성화시의 대역폭 분배
Fig10과 같이 채널 본딩을 한 경우 2개 신호가 9채널, 13채널을 중심으로 대역폭을 중복해서 사용된다. 즉 상대적으로 넓은 대역폭을 사용하지만 QoS 규약에 따라 순차적으로 데이터를 전송해야 하므로 이미 신호 간 간섭으로 인한 성능 저하가 이루어진 상태이다.
Fig11. 채널 본딩 비활성화시의 대역폭 분배
하지만 Fig11과 같이 채널 본딩이 비활성화 한 경우 신호 간 간섭으로 인한 성능 저하가 이루어지지 않은 상태이다.
신호 수에 따른 성능 저하는 정비례하지 않는다. 물론 순차적으로 처리할 데이터의 양 자체가 증가하기 때문에 성능 저하가 있기는 하지만 이미 QoS 규약에 따라 데이터 처리가 이루어지므로 상대적으로 처음 간섭보다 성능 저하는 크지 않다. 이런 점을 고려하자면 반드시 채널 본딩을 하지 않는 경우가 유리하다고 볼 수는 없다. 오히려 주위 신호가 존재하는 폭이 성능 저하 폭이 더 클 수 있다.
802.11 통신 체계가 정립될 당시에는 한 지점에 영향을 미치는 WiFi 신호의 수가 현 시점에서의 국내 상황만큼 많아질 것을 고려하지 못했을 것이다. 때문에 한 영역에 영향을 미치는 신호의 수와 채널 당 최소한으로 가져야 할 대역폭을 고려한 선택이 13개 내외의 채널이다. 하지만 국내 주요 거점 지역은 이미 한 곳에서 수십 개의 AP가 검색된다. 즉 한 채널 당 평균 2개 이상의 신호가 존재한다는 것이다. 이런 상황에서는 채널의 처음 의미가 사라진다. 즉 현재 802.11n 통신에서 사용되는 채널이란 개념 자체를 심각하게 검토해봐야 할 수 있다는 것이다.
2. 신호 간 채널 간격에 따른 통신 성능 비교
AP 2를 13채널로 고정하고 AP 1의 채널을 조절해 사이 간격을 점점 벌렸다. 그 결과 업로드 성능은 4개 채널 차이부터 주위와의 간섭이 없는 상태에 가깝게 회복되었다. 하지만 다운로드 속도는 6개 채널이 벌어져야 정상 속도로 회복되었다.
앞에서도 짚고 넘어갔듯이 OFDM 방식의 802.11n 통신은 주위 4개 채널과의 간섭이 존재한다. 일반적으로 OFDM 변조 방식을 사용해 채널이 20Mhz이고 5Mhz 간격을 두고 떨어져 있는 802.11n 통신은 4개 채널만 띄우면 두 신호 사이 간섭이 없어야 한다. 하지만 이 결과에 따르면 6개 채널이 떨어진 상태에서도 간섭이 발생한다.
신호 간 4개, 5개 채널이 존재해 주파수가 직접적으로 겹치지 않는 상황에서 발생하는 간섭은 QoS 규약에 따른 간섭이라고 볼 수 없다. 이는 지금까지는 거의 인식되지 못한 주파수의 작은 차이가 있어도 간섭이 일어날 수 있는 파동의 개념의 간섭이다. WiFi 통신 역시 전파를 통해 이루어지므로 WiFi 통신의 물리적 간섭 역시 어느 정도의 비중을 차지할 것이다. 앞으로 WiFi 통신망을 구축할 때 고려할 필요가 있는 요소이다.
3. 반사판에 형태에 따른 통신 성능 비교
13채널과 13채널이 간섭을 일으키는 경우에서는 모든 반사판이 효과를 나타낸다. 두 신호 사이의 극단적인 간섭을 막아 주기 때문으로 보인다. 반사판 3의 개선 효과가 극단적으로 측정된 부분은 측정 과정에서의 문제가 있었던 것으로 보인다.
13-12채널의 경우 반사판 1의 개선 정도가 가장 좋다. 반사판 2, 반사판 3의 업로드 속도는 오히려 반사판이 존재하지 않는 경우보다 악화됐다.
AP 2를 13채널, AP 1을 11채널로 설정한 경우 역시 반사판 1의 개선 정도가 가장 좋다.
13-10채널의 경우 반사판 사용 시 개선 효과가 미미했다. 이후 13-9채널부터 테스트를 진행한 경우 개선 효과가 거의 없었다.
반사판을 이용한 개선 효과 전파의 물리적 간섭을 최소화한 것으로 보인다. 신호가 송출되는 안테나 사이에 반사판을 둠으로서 전파 사이 물리적 간섭이 줄어든 것으로 보인다. 다만 노트북이 존재하는 방향으로의 신호가 다소 줄어든 경우에는 오히려 성능이 저하된 것으로 보인다. 이로부터 WiFi 신호의 간섭에 물리적 간섭도 일정 비중을 차지하며 특히 채널 사이 간격이 가까운 경우에 물리적 간섭이 더욱 큼을 알 수 있었다.
또한 반사판을 적절히 설치하면 부득이하게 다수의 WiFI 신호 사이의 충분한 채널 간격을 확보하지 못한 경우에도 간섭을 최소화할 수 있음을 보였다. 특히 반사판 1은 AP 기준으로 앞, 뒤로의 지향성이 없으므로 거의 대부분의 경우에서 신호 간 간섭 개선 효과가 있을 것이다.
4. 지하철에서의 WiFi 통신망 구축 상황
지하철에서는 올레 WiFi의 통신 성능이 T WiFi의 통신 성능보다 우수한 것으로 보인다. 통신사가 지하철에 구축한 WiFi는 Wibro 통신을 이용하는 EGG 기반이다. KT의 Wibro 통신망 구축 상태와 기기 성능이 SKT에 비해 우수해 지하철에서의 올레 WiFi 성능이 뛰어난 것으로 보인다. 하지만 두 WiFi의 통신 성능 모두 EGG가 일반적으로 구현할 수 있는 통신 성능에 비해 매우 떨어진다. 3.9세대 이동 통신인 Wibro 기반의 스트롱 EGG는 1Mbps 보다 성능을 구현할 수 있으며 지하철에 구축된 퍼블릭 EGG의 경우 그 성능은 더욱 뛰어날 것이다. 실험을 한 시간은 오후 4시경으로 전동차 내 사람은 거의 없었기 때문에 다수의 사용자로 인한 성능 저하는 거의 없었다. 이런 상황에서도 통신 성능이 좋지 않은데 출, 퇴근 시간에는 WiFi 통신이 매우 어려울 것이다.
Fig16. 가산 디지털 단지 플랫폼에서 수신되는 AP 신호
Fig16은 Net Stumbler를 통해 가산 디지털 단지 역의 플랫폼에서 수신되는 WiFi 신호의 목록이다. 무려 22개의 WiFi 신호가 존재하며 대부분 통신 3사의 것이다. 22개의 신호가 존재하는 것보다 심각한 문제는 이들 신호 중 다수의 채널이 중복된다는 것이다. 올레 WiFi, T WiFi는 주로 13채널과 6채널을 사용한다. 이는 802.11b 통신의 경우 DSSS 변조에 따라 22Mhz를 사용하고 그에 따라 1, 6, 13 채널을 사용하는 것이 간섭을 최소화하는 것임을 고려한 것으로 보인다. 하지만 실제로 통신사들은 OFDM 방식의 802.11g 또는 802.11n 통신을 기반으로 WiFi Zone을 구축했을 것이다. OFDM 방식의 경우 1, 5, 9, 13채널을 사용하는 것이 효과적이다. 이처럼 통신사에서 802.11b 규격에 최적화된 1, 6, 13 채널을 사용하는 것은 WiFi 신호 간 간섭 최소화를 본격적으로 추진하지 않은 것으로 보인다.